Serveur d'exploration sur le suicide chez les dentistes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Proteins, pathogens, and failure at the composite-tooth interface.

Identifieur interne : 000212 ( Main/Exploration ); précédent : 000211; suivant : 000213

Proteins, pathogens, and failure at the composite-tooth interface.

Auteurs : P. Spencer [États-Unis] ; Q. Ye ; A. Misra [États-Unis] ; S E P. Goncalves [Brésil] ; J S Laurence [États-Unis]

Source :

RBID : pubmed:25190266

Descripteurs français

English descriptors

Abstract

In the United States, composites accounted for nearly 70% of the 173.2 million composite and amalgam restorations placed in 2006 (Kingman et al., 2012), and it is likely that the use of composite will continue to increase as dentists phase out dental amalgam. This trend is not, however, without consequences. The failure rate of composite restorations is double that of amalgam (Ferracane, 2013). Composite restorations accumulate more biofilm, experience more secondary decay, and require more frequent replacement. In vivo biodegradation of the adhesive bond at the composite-tooth interface is a major contributor to the cascade of events leading to restoration failure. Binding by proteins, particularly gp340, from the salivary pellicle leads to biofilm attachment, which accelerates degradation of the interfacial bond and demineralization of the tooth by recruiting the pioneer bacterium Streptococcus mutans to the surface. Bacterial production of lactic acid lowers the pH of the oral microenvironment, erodes hydroxyapatite in enamel and dentin, and promotes hydrolysis of the adhesive. Secreted esterases further hydrolyze the adhesive polymer, exposing the soft underlying collagenous dentinal matrix and allowing further infiltration by the pathogenic biofilm. Manifold approaches are being pursued to increase the longevity of composite dental restorations based on the major contributing factors responsible for degradation. The key material and biological components and the interactions involved in the destructive processes, including recent advances in understanding the structural and molecular basis of biofilm recruitment, are described in this review. Innovative strategies to mitigate these pathogenic effects and slow deterioration are discussed.

DOI: 10.1177/0022034514550039
PubMed: 25190266
PubMed Central: PMC4237635


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proteins, pathogens, and failure at the composite-tooth interface.</title>
<author>
<name sortKey="Spencer, P" sort="Spencer, P" uniqKey="Spencer P" first="P" last="Spencer">P. Spencer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering Bioengineering Research Center pspencer@ku.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Ye, Q" sort="Ye, Q" uniqKey="Ye Q" first="Q" last="Ye">Q. Ye</name>
<affiliation>
<nlm:affiliation>Bioengineering Research Center.</nlm:affiliation>
<wicri:noCountry code="no comma">Bioengineering Research Center.</wicri:noCountry>
<wicri:noCountry code="no comma">Bioengineering Research Center.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Misra, A" sort="Misra, A" uniqKey="Misra A" first="A" last="Misra">A. Misra</name>
<affiliation wicri:level="4">
<nlm:affiliation>Bioengineering Research Center Department of Civil Engineering, University of Kansas, Lawrence, KS, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioengineering Research Center Department of Civil Engineering, University of Kansas, Lawrence, KS</wicri:regionArea>
<placeName>
<region type="state">Kansas</region>
<settlement type="city">Lawrence (Kansas)</settlement>
</placeName>
<orgName type="university">Université du Kansas</orgName>
</affiliation>
</author>
<author>
<name sortKey="Goncalves, S E P" sort="Goncalves, S E P" uniqKey="Goncalves S" first="S E P" last="Goncalves">S E P. Goncalves</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Dentistry of São José dos Campos, UNESP, Univ Estadual Paulista, São José dos Campos, SP, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>School of Dentistry of São José dos Campos, UNESP, Univ Estadual Paulista, São José dos Campos, SP</wicri:regionArea>
<placeName>
<region type="state">État de São Paulo</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Laurence, J S" sort="Laurence, J S" uniqKey="Laurence J" first="J S" last="Laurence">J S Laurence</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS</wicri:regionArea>
<placeName>
<region type="state">Kansas</region>
<settlement type="city">Lawrence (Kansas)</settlement>
</placeName>
<orgName type="university">Université du Kansas</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25190266</idno>
<idno type="pmid">25190266</idno>
<idno type="doi">10.1177/0022034514550039</idno>
<idno type="pmc">PMC4237635</idno>
<idno type="wicri:Area/Main/Corpus">000196</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000196</idno>
<idno type="wicri:Area/Main/Curation">000196</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000196</idno>
<idno type="wicri:Area/Main/Exploration">000196</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Proteins, pathogens, and failure at the composite-tooth interface.</title>
<author>
<name sortKey="Spencer, P" sort="Spencer, P" uniqKey="Spencer P" first="P" last="Spencer">P. Spencer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering Bioengineering Research Center pspencer@ku.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Ye, Q" sort="Ye, Q" uniqKey="Ye Q" first="Q" last="Ye">Q. Ye</name>
<affiliation>
<nlm:affiliation>Bioengineering Research Center.</nlm:affiliation>
<wicri:noCountry code="no comma">Bioengineering Research Center.</wicri:noCountry>
<wicri:noCountry code="no comma">Bioengineering Research Center.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Misra, A" sort="Misra, A" uniqKey="Misra A" first="A" last="Misra">A. Misra</name>
<affiliation wicri:level="4">
<nlm:affiliation>Bioengineering Research Center Department of Civil Engineering, University of Kansas, Lawrence, KS, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioengineering Research Center Department of Civil Engineering, University of Kansas, Lawrence, KS</wicri:regionArea>
<placeName>
<region type="state">Kansas</region>
<settlement type="city">Lawrence (Kansas)</settlement>
</placeName>
<orgName type="university">Université du Kansas</orgName>
</affiliation>
</author>
<author>
<name sortKey="Goncalves, S E P" sort="Goncalves, S E P" uniqKey="Goncalves S" first="S E P" last="Goncalves">S E P. Goncalves</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Dentistry of São José dos Campos, UNESP, Univ Estadual Paulista, São José dos Campos, SP, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>School of Dentistry of São José dos Campos, UNESP, Univ Estadual Paulista, São José dos Campos, SP</wicri:regionArea>
<placeName>
<region type="state">État de São Paulo</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Laurence, J S" sort="Laurence, J S" uniqKey="Laurence J" first="J S" last="Laurence">J S Laurence</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS</wicri:regionArea>
<placeName>
<region type="state">Kansas</region>
<settlement type="city">Lawrence (Kansas)</settlement>
</placeName>
<orgName type="university">Université du Kansas</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of dental research</title>
<idno type="eISSN">1544-0591</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Adhesion (physiology)</term>
<term>Biofilms (MeSH)</term>
<term>Composite Resins (chemistry)</term>
<term>Dental Bonding (MeSH)</term>
<term>Dental Materials (chemistry)</term>
<term>Dental Pellicle (microbiology)</term>
<term>Dental Restoration Failure (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Salivary Proteins and Peptides (pharmacokinetics)</term>
<term>Streptococcus mutans (physiology)</term>
<term>Tooth (metabolism)</term>
<term>Tooth (microbiology)</term>
<term>Tooth Demineralization (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adhérence bactérienne (physiologie)</term>
<term>Biofilms (MeSH)</term>
<term>Collage dentaire (MeSH)</term>
<term>Dent (microbiologie)</term>
<term>Dent (métabolisme)</term>
<term>Déminéralisation dentaire (microbiologie)</term>
<term>Humains (MeSH)</term>
<term>Matériaux dentaires (composition chimique)</term>
<term>Pellicule salivaire (microbiologie)</term>
<term>Protéines et peptides salivaires (pharmacocinétique)</term>
<term>Résines composites (composition chimique)</term>
<term>Streptococcus mutans (physiologie)</term>
<term>Échec de restauration dentaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Composite Resins</term>
<term>Dental Materials</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Matériaux dentaires</term>
<term>Résines composites</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Tooth</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Dent</term>
<term>Déminéralisation dentaire</term>
<term>Pellicule salivaire</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Dental Pellicle</term>
<term>Tooth</term>
<term>Tooth Demineralization</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Dent</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacocinétique" xml:lang="fr">
<term>Protéines et peptides salivaires</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Salivary Proteins and Peptides</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Adhérence bactérienne</term>
<term>Streptococcus mutans</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Bacterial Adhesion</term>
<term>Streptococcus mutans</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biofilms</term>
<term>Dental Bonding</term>
<term>Dental Restoration Failure</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biofilms</term>
<term>Collage dentaire</term>
<term>Humains</term>
<term>Échec de restauration dentaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the United States, composites accounted for nearly 70% of the 173.2 million composite and amalgam restorations placed in 2006 (Kingman et al., 2012), and it is likely that the use of composite will continue to increase as dentists phase out dental amalgam. This trend is not, however, without consequences. The failure rate of composite restorations is double that of amalgam (Ferracane, 2013). Composite restorations accumulate more biofilm, experience more secondary decay, and require more frequent replacement. In vivo biodegradation of the adhesive bond at the composite-tooth interface is a major contributor to the cascade of events leading to restoration failure. Binding by proteins, particularly gp340, from the salivary pellicle leads to biofilm attachment, which accelerates degradation of the interfacial bond and demineralization of the tooth by recruiting the pioneer bacterium Streptococcus mutans to the surface. Bacterial production of lactic acid lowers the pH of the oral microenvironment, erodes hydroxyapatite in enamel and dentin, and promotes hydrolysis of the adhesive. Secreted esterases further hydrolyze the adhesive polymer, exposing the soft underlying collagenous dentinal matrix and allowing further infiltration by the pathogenic biofilm. Manifold approaches are being pursued to increase the longevity of composite dental restorations based on the major contributing factors responsible for degradation. The key material and biological components and the interactions involved in the destructive processes, including recent advances in understanding the structural and molecular basis of biofilm recruitment, are described in this review. Innovative strategies to mitigate these pathogenic effects and slow deterioration are discussed. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25190266</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1544-0591</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>93</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of dental research</Title>
<ISOAbbreviation>J Dent Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Proteins, pathogens, and failure at the composite-tooth interface.</ArticleTitle>
<Pagination>
<MedlinePgn>1243-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1177/0022034514550039</ELocationID>
<Abstract>
<AbstractText>In the United States, composites accounted for nearly 70% of the 173.2 million composite and amalgam restorations placed in 2006 (Kingman et al., 2012), and it is likely that the use of composite will continue to increase as dentists phase out dental amalgam. This trend is not, however, without consequences. The failure rate of composite restorations is double that of amalgam (Ferracane, 2013). Composite restorations accumulate more biofilm, experience more secondary decay, and require more frequent replacement. In vivo biodegradation of the adhesive bond at the composite-tooth interface is a major contributor to the cascade of events leading to restoration failure. Binding by proteins, particularly gp340, from the salivary pellicle leads to biofilm attachment, which accelerates degradation of the interfacial bond and demineralization of the tooth by recruiting the pioneer bacterium Streptococcus mutans to the surface. Bacterial production of lactic acid lowers the pH of the oral microenvironment, erodes hydroxyapatite in enamel and dentin, and promotes hydrolysis of the adhesive. Secreted esterases further hydrolyze the adhesive polymer, exposing the soft underlying collagenous dentinal matrix and allowing further infiltration by the pathogenic biofilm. Manifold approaches are being pursued to increase the longevity of composite dental restorations based on the major contributing factors responsible for degradation. The key material and biological components and the interactions involved in the destructive processes, including recent advances in understanding the structural and molecular basis of biofilm recruitment, are described in this review. Innovative strategies to mitigate these pathogenic effects and slow deterioration are discussed. </AbstractText>
<CopyrightInformation>© International & American Associations for Dental Research.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Spencer</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering Bioengineering Research Center pspencer@ku.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Q</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Bioengineering Research Center.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Misra</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Bioengineering Research Center Department of Civil Engineering, University of Kansas, Lawrence, KS, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goncalves</LastName>
<ForeName>S E P</ForeName>
<Initials>SE</Initials>
<AffiliationInfo>
<Affiliation>School of Dentistry of São José dos Campos, UNESP, Univ Estadual Paulista, São José dos Campos, SP, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Laurence</LastName>
<ForeName>J S</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 DE014392</GrantID>
<Acronym>DE</Acronym>
<Agency>NIDCR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01DE14392-08S1</GrantID>
<Acronym>DE</Acronym>
<Agency>NIDCR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01DE14392</GrantID>
<Acronym>DE</Acronym>
<Agency>NIDCR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01DE022054</GrantID>
<Acronym>DE</Acronym>
<Agency>NIDCR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DE022054</GrantID>
<Acronym>DE</Acronym>
<Agency>NIDCR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>09</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Dent Res</MedlineTA>
<NlmUniqueID>0354343</NlmUniqueID>
<ISSNLinking>0022-0345</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003188">Composite Resins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003764">Dental Materials</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012471">Salivary Proteins and Peptides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>D</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001422" MajorTopicYN="N">Bacterial Adhesion</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018441" MajorTopicYN="Y">Biofilms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003188" MajorTopicYN="N">Composite Resins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001840" MajorTopicYN="N">Dental Bonding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003764" MajorTopicYN="N">Dental Materials</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044622" MajorTopicYN="N">Dental Pellicle</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019232" MajorTopicYN="Y">Dental Restoration Failure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012471" MajorTopicYN="N">Salivary Proteins and Peptides</DescriptorName>
<QualifierName UI="Q000493" MajorTopicYN="Y">pharmacokinetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013295" MajorTopicYN="N">Streptococcus mutans</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014070" MajorTopicYN="N">Tooth</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017001" MajorTopicYN="N">Tooth Demineralization</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Streptococcus mutans</Keyword>
<Keyword MajorTopicYN="N">biofilm</Keyword>
<Keyword MajorTopicYN="N">dentin bonding agents</Keyword>
<Keyword MajorTopicYN="N">esterases</Keyword>
<Keyword MajorTopicYN="N">gp340</Keyword>
<Keyword MajorTopicYN="N">methacrylate</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25190266</ArticleId>
<ArticleId IdType="pii">0022034514550039</ArticleId>
<ArticleId IdType="doi">10.1177/0022034514550039</ArticleId>
<ArticleId IdType="pmc">PMC4237635</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Am Dent Assoc. 2000 Aug;131(8):1186-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10953536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Oral Biol Med. 2002;13(6):509-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12499243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 2008 Aug;87(8):710-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18650540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 2011 Aug;90(8):953-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21220360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 2010 Jan;89(1):8-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19918089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2013 Aug;90(2):67-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23707657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 2010 Sep;89(9):996-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20505047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Caries Res. 1992;26(6):428-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1294302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dent Mater. 2013 Oct;29(10):999-1011</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23953737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2013 Jun;34(19):4555-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23541107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Dent Assoc. 2012 Dec;143(12):1292-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23204083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Scand J Dent Res. 1987 Oct;95(5):369-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3477852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 1994 Sep;73(9):1493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7523469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2007 Sep 1;179(5):3126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17709527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5983-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20231452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2008 Mar;29(8):1127-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18022228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dent Mater. 2013 Jan;29(1):51-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22809582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 2009 Apr;88(4):372-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19407160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Biomed Eng. 2010 Jun;38(6):1989-2003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20195761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oper Dent. 1995 Jan-Feb;20(1):2-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8700763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2007 Oct;51(10):3634-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17646419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 2010 Oct;89(10):1063-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20660797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 1988 Dec;67(12):1483-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3198846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2004 May;25(10):1787-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14738842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dent Mater. 2014 Jan;30(1):16-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24113132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Aug 8;289(32):21877-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24923446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2003 Feb;149(Pt 2):279-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12624191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Polym Mater. 2014;63(7):361-367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25400302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Polym Sci Symp. 2008 Mar 15;107(6):3588-3597</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22919119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 2013 Nov;92(11):989-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24026951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Sci. 2013;20:44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23815775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res B Appl Biomater. 2015 Feb;103(2):324-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2007 Nov;28(32):4870-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17706762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 1;282(22):16654-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17405873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 2004 Mar;83(3):216-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14981122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 2005 Apr;84(4):355-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15790743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dent Mater. 2008 Jun;24(6):732-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17897707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dent Mater. 2014 Feb;30(2):182-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24332270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 2006 Oct;85(10):950-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16998139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Quintessence Int. 1999 Jul;30(7):501-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10635264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Dent Assoc. 2009 Feb;140(2):200-9; quiz 249</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19188417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dent Mater. 2005 Oct;21(10):895-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16038969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res A. 2015 Feb;103(2):646-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24753362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res B Appl Biomater. 2010 Jan;92(1):268-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19904824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 2011 Apr;90(4):535-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21212315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 1989 Sep;68(9):1303-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2550531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 2010 Jul;89(7):657-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20448246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dent Mater. 2012 Jun;28(6):687-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22460187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mater Sci Mater Med. 2012 May;23(5):1157-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22430592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dent Mater. 2009 Dec;25(12):1569-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19709724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47699-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15355985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2006 Apr 19;295(15):1784-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16622140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2014 May 13;30(18):5115-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24754639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Caries Res. 2006;40(5):403-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2005 Apr;73(4):2245-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15784568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent. 2011 Mar;39(3):238-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21215788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Esthet Restor Dent. 2013 Aug;25(4):219-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23910180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res B Appl Biomater. 2009 Oct;91(1):61-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19358261</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Brésil</li>
<li>États-Unis</li>
</country>
<region>
<li>Kansas</li>
<li>État de São Paulo</li>
</region>
<settlement>
<li>Lawrence (Kansas)</li>
</settlement>
<orgName>
<li>Université du Kansas</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Ye, Q" sort="Ye, Q" uniqKey="Ye Q" first="Q" last="Ye">Q. Ye</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Spencer, P" sort="Spencer, P" uniqKey="Spencer P" first="P" last="Spencer">P. Spencer</name>
</noRegion>
<name sortKey="Laurence, J S" sort="Laurence, J S" uniqKey="Laurence J" first="J S" last="Laurence">J S Laurence</name>
<name sortKey="Misra, A" sort="Misra, A" uniqKey="Misra A" first="A" last="Misra">A. Misra</name>
</country>
<country name="Brésil">
<region name="État de São Paulo">
<name sortKey="Goncalves, S E P" sort="Goncalves, S E P" uniqKey="Goncalves S" first="S E P" last="Goncalves">S E P. Goncalves</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SuicidDentistV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000212 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000212 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SuicidDentistV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25190266
   |texte=   Proteins, pathogens, and failure at the composite-tooth interface.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25190266" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SuicidDentistV1 

Wicri

This area was generated with Dilib version V0.6.39.
Data generation: Sun Oct 3 17:04:29 2021. Site generation: Sun Oct 3 17:05:17 2021